Vector Laboratories is closed to Labor Day (US Holiday) on Monday, September 2nd.
We will be back in the office on Tuesday, September 3rd. We will respond to emails upon our return. Have a wonderful day.

Fmoc-N-amido-dPEG®₂₄-acid (QBD-10313)

[text-backorder]

Description

Fmoc-N-amido-dPEG®24-acid, product number QBD-10313, is one of a broad line of products designed for use in peptide synthesis. The long (76 atoms), discrete PEG (dPEG®) spacer is functionalized with a propionic acid group on one end and Fmoc-protected amine on the other. The compound can be added to the N-terminus of a growing peptide chain or to a primary-amine-functionalized side chain of an amino acid such as lysine. The dPEG®24 spacer imparts water solubility to the peptide to which it is conjugated.

QBD-10313 permits our customers to insert a dPEG® spacer into a peptide chain using familiar Fmoc chemistry using solid phase or solution phase chemistry. The dPEG® compound can be inserted at either end of the peptide chain or in the middle of two amino acid sequences to provide a flexible linker between distinct functional peptides. Additionally, the dPEG® spacer can be used to provide spacing in a synthetic construct where steric hindrance is a problem. The amphiphilic nature of dPEG® products means that the construct gains hydrodynamic volume and water solubility while remaining soluble in organic solvent. The Fmoc protecting group removes easily with a solution of piperidine in N,N-dimethylformamide (DMF).

Specifications

Unit Size100 mg, 1000 mg
Molecular Weight1368.59; single compound
Chemical formulaC₆₆H₁₁₃NO₂₈
CAS756526-01-9
Purity> 98%
SpacersdPEG® Spacer is 76 atoms and 89.0 Å
ShippingAmbient
Typical solubility properties (for additional information contact Customer Support)Methylene chloride, Acetontrile, DMAC, DMSO or water.
Storage and handling-20°C; Always let come to room temperature before opening; be careful to limit exposure to moisture and restore under an inert atmosphere; stock solutions can be prepared with dry solvent and kept for several days (freeze when not in use). dPEG® pegylation compounds are generally hygroscopic and should be treated as such. This will be less noticeable with liquids, but the solids will become tacky and difficult to manipulate, if care is not taken to minimize air exposure.

References

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See Chapter 18, Discrete PEG Reagents, pp. 787-821, for a full overview of the dPEG® products.

Effect of PEGylation of N-WASP181-200 on the Inhibitory Potency for Renal Aminoglycoside Accumulation. Kenju Fujii, Junya Nagai, Takeshi Sawada, Ryko Yumoto, and Mikihisa Takano, Bioconjugate Chemistry. 2009, 20 (8), pp 1553–1558 July 2, 2009. DOI: 10.1021/bc900094g.

Site-Specific Conjugation of Monodispersed DOTA-PEGn to a Thiolated Diabody Reveals the Effect of Increasing PEG Size on Kidney Clearance and Tumor Uptake with Improved 64-Copper PET Imaging. Lin Li,Desiree Crow, Fabio Turatti, James R. Bading, Anne-Line Anderson, Erasmus Poku, Paul J. Yazaki, Jenny Carmichael, David Leong, Michael P. Wheatcroft,Andrew A. Raubitschek, Peter J. Hudson,David Colcher, and John E. Shively.Bioconjugate Chemistry. 2011, 22 (4), pp 709–716 March 12, 2011. DOI: 10.1021/bc100464e.

Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K. Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy. 2011, 87 (9) pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.

Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing. Christian Dohmen, Thomas Fröhlich, Ulrich Lächelt, Ingo Röhl, Hans-Peter Vornlocher, Philipp Hadwiger and Ernst Wagner. Molecular Therapy Nucleic Acids. 2012, 1 (e7) January 31, 2012. DOI: 10.1038/mtna.2011.10.

Precise and multifunctional conjugates for targeted siRNA delivery. Prof. Dr. Ernst Wagner Prof. Dr. Wolfgang Friess. Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München. April 27, 2012.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115-8127. August 29, 2013. DOI: 10.1021/nn4033954.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.


Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.


Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino) amides for receptor-mediated gene delivery. Irene Martin, Christian Dohmen, Carlos Mas-Moruno, Christina Troiber, Petra Kos, David Schaffert, Ulrich Lächelt, Meritxell Teixidó, Michael Günther, Horst Kessler, Ernest Giralt and Ernst Wagner. Organic & Biomolecular Chemistry. 2012, 10 pp 3258-3268. February 23, 2012. DOI: 10.1039/C2OB06907E.

Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI: 10.1016/j.chembiol.2011.06.012.

Design of a Heterobivalent Inhibitor of Allergy and More Physiologically Relevant Allergy Models. Michael William Handlogten. University of Notre Dame. 2013, March 28, 2013.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.

Synthetic Polyglutamylation of Dual-Functional MTX Ligands for Enhanced Combined Cytotoxicity of Poly(I:C) Nanoplexes. Ulrich Lächelt Valentin Wittmann, Katharina Müller, Daniel Edinger, Petra Kos, Miriam Höhn, and Ernst Wagner. Molecular Pharmaceutics. 2014, 11 (8) pp 2631-2639. April 22, 2014. DOI: 10.1021/MP500017u.

Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Petra Kos, Ulrich Lachelt, Annika Herrmann, Fruke Martina Mickler, Markus Doblinger, Dongsheng He, Ana Krhac Levacic, Stephan Morys, Christoph Brauchle, and Ernst Wagner. Nanoscale. 2015, 7 (12), pp 5350-5362 February 15, 2015. DOI: 10.1039/c4nr06556e.

Nanosized Multifunctional Polyplexes for Receptor-Mediated SiRNA Delivery. Christian Dohmen, Daniel Edinger, Thomas Frohlich, Laura Schreiner, Ulrich Lachelt, Christina Troiber, Joachim Radler, Philipp Hadwiger, Hans-Peter Vornlocher, and Ernst Wagner. ACS Nano. 2012, 6 (6), pp 5198-5208. May 30, 2012. DOI: 10.1021/nn300960m.

Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery. Dongsheng He, Katharina Muller, Ana Krhac, Petra Kos, Ulrich Lachelt, and Ernst Wagner. Bioconjugate Chemistry. 2016, January 3, 2016. DOI: 10.1021/acs.bioconjchem.5b00649.

Combinal optimization of nucleic acid carriers for folate-targeted delivery. Dongsheng He. 2016.

Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody-Drug Conjugates. Matthew R Levengood, Xinqun Zhang, Joshua H Hunter, Kim K Emmerton, Jamie B Miyamoto, Timothy S Lewis, and Peter D Senter. Angewandte Chemie. 2016, 55 pp 1-6. December 14, 2016. DOI: 10.1002/anie.201608292.

Oligaminoamide-Based siRNA Formulations for Folate Receptor-Directed Tumor Targeting and Gene Silencing. Dian-Jang Lee. The Faculty of Chemistry and Pharmacy. 2016, pp 1-107. March 11, 2016.

Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Sheilding of pDNA Nanoparticles. Stephan Morys, Ana Krhac Levacic, Sarah Urnauer, Susanne Kempter, Sarah Kern, Joachim O Radler, Christine Spitzweg, Ulrich Lachelt, and Ernst Wagner. Polymers. 2017, 9 (4) pp 1-20. April 19, 2017. DOI: 10.3390/polym9040142.

Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Intracellular Stability for In Vivo Gene Silencing in Leukemia. Dian-Jang Lee, Eva Kessel, Taavi Lehto, Xueying Liu, Naoto Yoshinaga, Kart Padari, Ying-Chen Chen, Susanne Kempter, Satoshi Uchida, Joachim O. Radler, Margus Pooga, Ming-Thau Sheu, Kazunori Kataoka, and Ernst Wagner. Bioconjugate Chemistry. 2017, August 3, 2017. DOI: 10.1021/acs.bioconjchem.7b00383.

Protein Transduction by Lipo-Oligoaminoamide Nanoformulations. Peng Zhang. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie and Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2017, pp 1-102. July 25, 2017. https://edoc.ub.uni-muenchen.de/21022/1/Zhang_Peng.pdf

Peptide Inhibitor of Complement C1 Inhibits the Peroxidase Activity of Hemoglobin and Myoglobin. Pamela S. Hair, Kenji M. Cunnion, and Neel K. Krishna. Hindawi International Journal of Peptides. 2017, 2017(9454583) pp 1-10. September 10, 2017. http://doi.org/10.1155/2017/9454583.

Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. Dian-Jang Lee, Dongsheng He, Eva Kessel, Kärt Padari, Susanne Kempter, Ulrich Lächelt, Joachim O. Rädler, Margus Pooga, Ernst Wagner. Journal of Controlled Release. 2016, 244 (B) pp 280-291. 12/28/2016. DOI: 10.1016/j.jconrel.2016.06.011.

Dual-Targeted Polyplexes Based on Sequence-Defined Peptide–PEG–Oligoamino Amides. Petra Kos,
Ulrich Lächelt, Dongsheng He, Yu Nie, Zhongwei Gu, and Ernst Wa. Journal of Pharmaceutical Sciences. 2014, 104 (2) pp 464-475. 9/29/2014. DOI: 10.1002/jps.24194.

Telomere-specific chromatin capture using a pyrrole–imidazole polyamide probe for the identification of proteins and non-coding RNAs. Satoru Ide, Asuka Sasaki, Yusuke Kawamoto, Toshikazu Bando, Hiroshi Sugiyama & Kazuhiro Maeshima. Epigenetics & Chromatin. 2021. October 9, 2021. https://doi.org/10.1186/s13072-021-00421-8

Selective sodium iodide symporter (NIS) gene therapy of glioblastoma mediated by EGFR-targeted lipopolyplexes. Rebekka Spellerberg, Teoman Benli-Hoppe, Carolin Kitzberger, Simone Berger, Kathrin A Schmohl, Nathalie Schwenk, Hsi-Yu Yen, Christian Zach, Franz Schilling, Wolfgang A Weber, Roland E Kälin, Rainer Glass, Peter J Nelson, Ernst Wagner, Christine Spitzweg. Molecular Therapy Oncolytics. 2021. Volume 23, p432-446. October 29, 2021. https://doi.org/10.1016/j.omto.2021.10.011

Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Teoman Benli-Hoppe, Şurhan Göl Öztürk, Özgür Öztürk, Simone Berger, Ernst Wagner, Mina Yazdi. Macromolecular Rapid Communications. 2021. Volume 43, Issue 12. October 29, 2021. https://doi.org/10.1002/marc.202100602

Applicable patents and legal notices are available at legal notices.

How do I Request a Quote?

To request a quote for products:

  1.  Sign in to VectorLabs.com
  2.  Add the items you wish to quote to the cart;
  3.  View your cart;
  4.  Click on the “Request a Quote” button found below the items in your cart;
  5.  Download your quote