Immunofluorescence Guide
Making IF as easy as ABC

Helping you reach new visualization frontiers in your research: this is our mission. Since our founding in 1976, a primary driving principle has been to develop and manufacture labeling and detection technologies that make IF as easy as ABC.

A. Reliable and reproducible reagents that instill trust and confidence.
B. Simple and robust product designs that streamline workflows and allow elucidation of complex biological systems.
C. A knowledge base of over 100 years of combined IF experience to help you accelerate the pace of discovery.

It’s as simple as that.

Table of Contents

2 Introduction
 2 Immunofluorescence Workflow
 8 Immunofluorescence Selection Guide
 6 Pioneering in IHC/IF Technology

8 Choosing a Detection System
 10 Considerations for IF Detection
 12 Fluorophore-Conjugated Secondary Antibodies
 – VectaFluor™ Ready-To-Use Antibody Reagents
 – VectaFluor™ R.T.U. Antibody Kits
 – VectaFluor™ Duet Immunofluorescence Double Labeling Kits
 – VectaFluor™ Excel Amplified Staining System

18 Fluorophore-Conjugated Streptavidin/Avidin Reagents
 19 Anti-Streptavidin and Anti-Avidin Antibody Reagents
 – Biotinylated and Unconjugated Secondary Antibodies
 – Enzyme-Conjugated Secondary Antibodies
 – Avidin and Streptavidin Enzyme Conjugates

22 Species on Species Detection (Mouse)
 23 Mouse on Mouse (M.O.M.®) Immunodetection Kits

24 Mounting Media
 25 VECTASHIELD® Antifade Mounting Media
 – VECTASHIELD® Antifade Mounting Medium
 – VECTASHIELD® HardSet™ Antifade Mounting Medium
 – VECTASHIELD® Mounting Media and Fluorophore Compatibility
 – VECTASHIELD® Mounting Media Formats and Applications

28 VectaCell™ Products for Live Cell Imaging
 – VectaCell™ Tritis Antifade Reagent
 – Live Cell Imaging of Organelles

29 Accessory Reagents
 – VECTABOND® Reagent Tissue Section Adhesive
 – ImmEdge™ Hydrophobic Barrier Pen
 – ImmPrint™ Histology Pen
 – Control Antibodies
 – Antigen Unmasking Solutions

30 Blocking Background Signal
 – TrueVIEW™ Autofluorescence Quenching Kit
 – BLOXALL® Endogenous HRP/AP Blocking Solution
 – Avidin/Biotin and Streptavidin/Biotin Blocking Kits
 – Normal Sera
 – Animal-Free Blocking Solutions
 – General Protein Blocking Reagents

Vector Laboratories was founded on a growing portfolio of purified lectins and lectin conjugates that helped to pioneer lectin histochemistry. These products remain a key component of our business today. In the early 1980s, we leveraged our expertise in histochemistry to revolutionize the field of IHC with the commercialization of antibody-based avidin-biotin reagents and the introduction of the VECTASTAIN® ABC system. This system enabled routine laboratory use of IHC with any standard brightfield microscope. Following the success of the ABC kits, Vector Laboratories has continued to introduce many novel and innovative products to support research endeavors for cell and tissue antigen visualization. These include the ImmPRESS™ micropolymer reagents, Mouse on Mouse (M.O.M.®) detection systems, unique ImmPACT™ enzyme substrates, and VECTASHIELD® Antifade Mounting Media for fluorescence applications.

Front cover: Fluorescent images with neon effect showing successive proliferation within the bulb of a hair follicle. Proliferating cells labeled for CldU (red), IdU (green) with cells dividing twice taking up both labels (yellow). Epidermal nuclei (blue) and dermal papilla nuclei (cyan) labeled with DAPI. Image provided by Nigel Hammond (Dixon Lab), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Dorsal root ganglia cells (neurons and satellite glia): Beta III tubulin (ms), DyLight® 488 Anti-Mouse IgG, • S100 (rb), DyLight® 594 Anti-Rabbit IgG. Mounted in VECTASHIELD® HardSet™ Antifade Mounting Medium with DAPI. Image courtesy of Dr. Emma East, Department of Life Sciences, The Open University, Milton Keynes, UK.
Immunofluorescence Workflow

Vector Laboratories is your resource for premium labeling and detection products at each step of your IF workflow.

<table>
<thead>
<tr>
<th>Tissue Preparation</th>
<th>Antigen Retrieval</th>
<th>Quench/Block</th>
<th>Primary Antibody/Lectins*</th>
<th>Secondary Antibody</th>
<th>Tertiary Reagent</th>
<th>Counterstain/Mount</th>
<th>Visualize</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTABOND® Tissue Section Adhesive</td>
<td>Antigen Unmasking Solutions, Citrate- or Tri-based</td>
<td>Vector® TrueVIEW™ Autofluorescence Quenching Kit**</td>
<td>Biotinylated lectins</td>
<td>VectaFluor™ TET™ Secondary Antibodies</td>
<td>VECTASHELL® Antifade Mounting Medium</td>
<td>VECTASHIELD® Antifade Mounting Medium</td>
<td>VECTASHIELD® Antifade Mounting Medium with DAPI</td>
</tr>
<tr>
<td>ImmPrint™ Histology Pen</td>
<td></td>
<td>Avidin/Biotin Blocking Kit</td>
<td>Fluorochrome-conjugated lectins</td>
<td>VectaFluor™ Duet™ IF Double Labeling Kits</td>
<td>VECTASHIELD® Antifade Mounting Medium with Propidium Iodide (PI)</td>
<td>VECTASHIELD® HardSet™ Antifade Mounting Medium</td>
<td>VECTASHIELD® HardSet™ Antifade Mounting Medium with TRITC-Phalloidin</td>
</tr>
<tr>
<td>ImmEdge™ Hydrophobic Barrier Pen</td>
<td>Streptavidin/Biotin Blocking Kit</td>
<td>Unconjugated lectins</td>
<td>Mouse on Mouse M.O.M.® Immunodetection Kits</td>
<td>Biotinylated secondary antibodies</td>
<td>VECTASHIELD® HardSet™ Antifade Mounting Medium</td>
<td>VECTASHIELD® HardSet™ Antifade Mounting Medium with DAPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animal-Free Blocker™ and Diluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casein Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vector® M.O.M.® Mouse Ig Blocking Reagent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbo-Free™ Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOXALL® Endogenous HRP/AP Blocking Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For more information visit: vectorlabs.com/lectins

** Vector® TrueVIEW™ is applied just prior to coverslipping
Follow the simple steps below to choose the most appropriate labeling and detection solution for your experiment.

1. Choose Primary Antibody
 • Specific for antigen of interest
 • Consider tissue species and preparation (fixation)
 • Consider antigen retrieval requirements

2. Choose Secondary Antibody and Tertiary Detection System
 • Choose fluorophore based on wavelengths available in microscope
 • Fluorophore-conjugated secondary antibody or biotinylated secondary antibody
 • Consider sensitivity requirements
 • Consider species of primary antibody
 • Consider tissue species

3. Choose Signal Amplification with Biotin-based Systems (Step 2, Option C)
 • Multiple rounds of amplification possible (with biotin-based systems)

4. Reduce Autofluorescence from Aldehyde Fixation
 • Vector® TrueVIEW™ Autofluorescence Quenching Kit

5. Choose Mounting Media with or without a Counterstain
 • VECTASHIELD® Antifade Mounting Media, with or without counterstain

6. Visualize
 • Fluorescence microscope
 • View using appropriate excitation/emission filters
demonstrated that fluorescently labeled antibodies could be visualized using an ordinary light microscope. This allowed for the IHC results to be viewed in any lab with a light microscope, with no need for expensive, complicated fluorescence instrumentation. The use of IHC as a research tool grew dramatically over the next decade. The technique began to be used in clinical settings at large university hospitals. The HRP assay system was further improved in the early 1980’s when Dr. Su-Ming Hsu showed that the high affinity of avidin for biotin could be used to increase the stability of the enzyme antibody complex and improve the sensitivity of the assay. Vector Laboratories was instrumental in the development of the IHC field by commercializing such key technologies. The use of avidin- and biotin-based detection systems dominated the IHC market for the next two decades.

Up to this time, visualization using fluorescence-microscopy was challenging due to the rapid photobleaching of fluorophores when exposed to the light of the microscope. This significantly limited the time over which a sample could be observed. In the early 1990’s, VECTASHIELD® Antifade Mounting Medium was introduced by Vector Laboratories as the first commercially available mountant for fluorescence. Not only did it have no autofluorescence (in the popular visualisation channels), it was also effective in preventing the photobleaching, or fading of the fluorophores. This advancement in microscopy not only made image acquisition and analysis much more convenient, it provided researchers with tools to challenge the limits of fluorescence detection.

In the last decade, immunofluorescence applications have been further improved by the adaptation of new super-resolution methods. Super-resolution microscopy allows imaging at a scale smaller than 200 nm. Due to its characteristics and convenience, VECTASHIELD® Mounting Medium has been found to be quite suitable for super-resolution imaging methods like stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (3D-SIM).

Observation is one of the fundamental steps in the scientific method. However, for centuries the scientific study of tissues was limited to observations of dissections with the unaired eye (gross anatomy).

This all changed in the 17th century when Anton Van Leeuwenhoek fabricated a microscope that allowed observations of tissues at the cellular level, thus establishing the science of histology. While early researchers found it relatively simple to distinguish between the cell boundaries and subcellular compartments in plants, doing so in animal tissue presented a much greater challenge. It wasn’t until the late 19th century with the introduction of dyes, such as hematoxylin that Paul Mayer used to successfully stain nuclei, that the subcellular structure of tissues became visible and the science of histochimistry emerged.

The number of available tissue dyes and stains increased rapidly during the early 20th century, as did the number of molecular families they identified. However, the ability to identify individual cellular- or tissue-specific proteins remained elusive. This changed in the mid-20th century when Dr. Albert Coons demonstrated that fluorescently labeled antibodies could be used to localize bacteria inside macrophages, thus helping to pioneer the science of immunohistochemistry (IHC). Over the next two decades our understanding of antibodies, antigens and immunology grew rapidly. However, IHC remained largely a specialized research tool used primarily in university settings. Then in the late 1960’s, Dr. Strats Aramaneas and Dr. Paul Nakane independently developed methods to covalently couple the enzyme horseradish peroxidase (HRP) to antibodies. HRP in the presence of diaminobenzidine and hydrogen peroxide creates a brown precipitate at the site of the HRP-conjugated antibody. The precipitate can be visualized using an ordinary light microscope. This allowed for the IHC results to be viewed in any lab having a light microscope, with no need for expensive, complicated fluorescence instrumentation.

The use of IHC as a research tool grew dramatically over the next decade. The technique began to be used in clinical settings at large university hospitals. The HRP assay system was further improved in the early 1980’s when Dr. Su-Ming Hsu showed that the high affinity of avidin for biotin could be used to increase the stability of the enzyme antibody complex and improve the sensitivity of the assay. Vector Laboratories was instrumental in the development of the IHC field by commercializing such key technologies. The use of avidin- and biotin-based detection systems dominated the IHC market for the next two decades.

Up to this time, visualization using fluorescence-microscopy was challenging due to the rapid photobleaching of fluorophores when exposed to the light of the microscope. This significantly limited the time over which a sample could be observed. In the early 1990’s, VECTASHIELD® Antifade Mounting Medium was introduced by Vector Laboratories as the first commercially available mountant for fluorescence. Not only did it have no autofluorescence (in the popular visualisation channels), it was also effective in preventing the photobleaching, or fading of the fluorophores. This advancement in microscopy not only made image acquisition and analysis much more convenient, it provided researchers with tools to challenge the limits of fluorescence detection.

In the last decade, immunofluorescence applications have been further improved by the adaptation of new super-resolution methods. Super-resolution microscopy allows imaging at a scale smaller than 200 nm. Due to its characteristics and convenience, VECTASHIELD® Mounting Medium has been found to be quite suitable for super-resolution imaging methods like stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (3D-SIM).

References
Choosing a Detection System

Immunofluorescence Overview

Immunofluorescence (IF) is a powerful method for visualizing proteins expressed directly within tissues. The IF method combines immunology and fluorescent molecules to localize proteins within defined morphological structures, and thus, provides insights into gene expression, protein-protein interactions, and biomarker identification. This method is used in a wide variety of applications, including basic research, assessment of normal and disease states in human and animal health, and in plant pathology studies.

Vector Laboratories develops and manufactures a wide selection of reagents for IF, including traditional fluorophore-conjugated antibodies and an extensive range of avidin/biotin products. Recent additions include conjugates with contemporary fluorophores such as DyLight® dyes as well as kits that offer a significant increase in sensitivity or help streamline workflows. The VECTASHIELD® and VECTASHIELD® HardSet™ Antifade Mounting Media are market-leading products on which researchers consistently rely to complete workflows and achieve signal retention for image acquisition and specimen archiving.

Comparison of Detection Systems

Choose the appropriate detection system for your experiment based on fluorophore (color), sensitivity, formats, flexibility, and time and cost.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® R.T.U. Secondary Antibodies</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Duet IF Double Labeling Kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Fluorescence-Conjugated Secondary Antibodies</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Far Red</td>
</tr>
<tr>
<td>Two Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Excel Amplified kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Streptavidin / Avidin Fluorophore Conjugates*</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td>Mouse on Mouse (M.O.M.®) Kits</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Far Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Traditional fluorophores include: Fluorescein (FITC), Rhodamine (TRITC), Texas Red®, AMCA, Phycoerythrin (PE)
* Sensitivity can be increased with multiple rounds of biotinylated anti-(strept)avidin and strept(avidin) fluorophore conjugates.

Colcemid (FFPE): Antigen retrieved with Antigen Unmasking Solution (citrate-based, pH 6.0) and stained with Cy5 Sambucus Nigra Lectin (SNA; fuchsia). VECTASHIELD® Antifade Mounting Medium with DAPI counterstain (blue).

Immunofluorescence (IF) is a powerful method for visualizing proteins expressed directly within tissues. The IF method combines immunology and fluorescent molecules to localize proteins within defined morphological structures, and thus, provides insights into gene expression, protein-protein interactions, and biomarker identification. This method is used in a wide variety of applications, including basic research, assessment of normal and disease states in human and animal health, and in plant pathology studies.

Vector Laboratories develops and manufactures a wide selection of reagents for IF, including traditional fluorophore-conjugated antibodies and an extensive range of avidin/biotin products. Recent additions include conjugates with contemporary fluorophores such as DyLight® dyes as well as kits that offer a significant increase in sensitivity or help streamline workflows. The VECTASHIELD® and VECTASHIELD® HardSet™ Antifade Mounting Media are market-leading products on which researchers consistently rely to complete workflows and achieve signal retention for image acquisition and specimen archiving.

Choosing a Detection System

Immunofluorescence Overview

Immunofluorescence (IF) is a powerful method for visualizing proteins expressed directly within tissues. The IF method combines immunology and fluorescent molecules to localize proteins within defined morphological structures, and thus, provides insights into gene expression, protein-protein interactions, and biomarker identification. This method is used in a wide variety of applications, including basic research, assessment of normal and disease states in human and animal health, and in plant pathology studies.

Vector Laboratories develops and manufactures a wide selection of reagents for IF, including traditional fluorophore-conjugated antibodies and an extensive range of avidin/biotin products. Recent additions include conjugates with contemporary fluorophores such as DyLight® dyes as well as kits that offer a significant increase in sensitivity or help streamline workflows. The VECTASHIELD® and VECTASHIELD® HardSet™ Antifade Mounting Media are market-leading products on which researchers consistently rely to complete workflows and achieve signal retention for image acquisition and specimen archiving.

Comparison of Detection Systems

Choose the appropriate detection system for your experiment based on fluorophore (color), sensitivity, formats, flexibility, and time and cost.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® R.T.U. Secondary Antibodies</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Duet IF Double Labeling Kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Fluorescence-Conjugated Secondary Antibodies</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Far Red</td>
</tr>
<tr>
<td>Two Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Excel Amplified kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Streptavidin / Avidin Fluorophore Conjugates*</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td>Mouse on Mouse (M.O.M.®) Kits</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Far Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Traditional fluorophores include: Fluorescein (FITC), Rhodamine (TRITC), Texas Red®, AMCA, Phycoerythrin (PE)
* Sensitivity can be increased with multiple rounds of biotinylated anti-(strept)avidin and strept(avidin) fluorophore conjugates.

Choosing a Detection System

Immunofluorescence Overview

Immunofluorescence (IF) is a powerful method for visualizing proteins expressed directly within tissues. The IF method combines immunology and fluorescent molecules to localize proteins within defined morphological structures, and thus, provides insights into gene expression, protein-protein interactions, and biomarker identification. This method is used in a wide variety of applications, including basic research, assessment of normal and disease states in human and animal health, and in plant pathology studies.

Vector Laboratories develops and manufactures a wide selection of reagents for IF, including traditional fluorophore-conjugated antibodies and an extensive range of avidin/biotin products. Recent additions include conjugates with contemporary fluorophores such as DyLight® dyes as well as kits that offer a significant increase in sensitivity or help streamline workflows. The VECTASHIELD® and VECTASHIELD® HardSet™ Antifade Mounting Media are market-leading products on which researchers consistently rely to complete workflows and achieve signal retention for image acquisition and specimen archiving.

Comparison of Detection Systems

Choose the appropriate detection system for your experiment based on fluorophore (color), sensitivity, formats, flexibility, and time and cost.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® R.T.U. Secondary Antibodies</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Duet IF Double Labeling Kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Fluorescence-Conjugated Secondary Antibodies</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Far Red</td>
</tr>
<tr>
<td>Two Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Excel Amplified kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Streptavidin / Avidin Fluorophore Conjugates*</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td>Mouse on Mouse (M.O.M.®) Kits</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Far Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Traditional fluorophores include: Fluorescein (FITC), Rhodamine (TRITC), Texas Red®, AMCA, Phycoerythrin (PE)
* Sensitivity can be increased with multiple rounds of biotinylated anti-(strept)avidin and strept(avidin) fluorophore conjugates.

Choosing a Detection System

Immunofluorescence Overview

Immunofluorescence (IF) is a powerful method for visualizing proteins expressed directly within tissues. The IF method combines immunology and fluorescent molecules to localize proteins within defined morphological structures, and thus, provides insights into gene expression, protein-protein interactions, and biomarker identification. This method is used in a wide variety of applications, including basic research, assessment of normal and disease states in human and animal health, and in plant pathology studies.

Vector Laboratories develops and manufactures a wide selection of reagents for IF, including traditional fluorophore-conjugated antibodies and an extensive range of avidin/biotin products. Recent additions include conjugates with contemporary fluorophores such as DyLight® dyes as well as kits that offer a significant increase in sensitivity or help streamline workflows. The VECTASHIELD® and VECTASHIELD® HardSet™ Antifade Mounting Media are market-leading products on which researchers consistently rely to complete workflows and achieve signal retention for image acquisition and specimen archiving.

Comparison of Detection Systems

Choose the appropriate detection system for your experiment based on fluorophore (color), sensitivity, formats, flexibility, and time and cost.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® R.T.U. Secondary Antibodies</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Duet IF Double Labeling Kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Fluorescence-Conjugated Secondary Antibodies</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Far Red</td>
</tr>
<tr>
<td>Two Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectaFluor® Excel Amplified kits</td>
<td>DyLight®</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Streptavidin / Avidin Fluorophore Conjugates*</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>*</td>
</tr>
<tr>
<td>Mouse on Mouse (M.O.M.®) Kits</td>
<td>Traditional DyLight® Cy5-Cy3</td>
<td>Blue</td>
<td>Green</td>
<td>**</td>
<td>•</td>
<td>•</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Far Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Traditional fluorophores include: Fluorescein (FITC), Rhodamine (TRITC), Texas Red®, AMCA, Phycoerythrin (PE)
* Sensitivity can be increased with multiple rounds of biotinylated anti-(strept)avidin and strept(avidin) fluorophore conjugates.
Choosing a Detection System

Considerations for IF Detection

Immunofluorescence detection reagents are used to localize and visualize target antigens expressed in tissue sections or cultured cells. When applied optimally, these highly specific reagents provide a defined contrast between their fluorescence, which demarcates the antigen, and the non-fluorescent region of the preparation. There are several options to achieve labeling for single and multiple antigen detection.

Direct Detection

One common IF method uses fluorophore-conjugated primary antibodies. This direct approach enables fast and easy IF visualization once the antibody has been conjugated; however, there are some disadvantages to this traditional method. For example, binding affinity and avidity could be compromised by the conjugation process, which would reduce signal and prevent moderately or weakly expressed antigens from being detected. Furthermore, expensive primary antibodies used at high concentrations could be cost prohibitive, and the visualization options would be limited to only one fluorophore.

Indirect Detection (One Step)

The indirect method, which uses labeled secondary antibodies, produces reliable, reproducible and economical IF results. This method avoids the disadvantages of directly conjugated primary antibodies and provides signal amplification that is necessary for most cell- and tissue-section labeling. Additionally, this one-step detection method is modular and allows simple substitution of the secondary with different fluorophore conjugates. Please refer to Table 2, page 13 for our range of concentrated reagents. Fluorophore-conjugated secondary antibodies would be recommended where a moderate to high expression of target antigen is expected.

Indirect Detection (Two Step)

Further signal amplification is introduced by using biotinylated secondary antibodies with avidin or streptavidin fluorophore conjugates. This well established and widely published methodology exploits the very high affinity between avidin or streptavidin and the small vitamin biotin. This two-step detection method enables the detection of weakly expressed antigens and provides a flexible and modular system with easy fluorophore substitution using different avidin or streptavidin conjugates (see pages 18-20). Additional amplification can be achieved by using biotinylated anti-avidin/streptavidin. For applications where use of biotin-based reagents for signal amplification would be problematic, we offer a non-biotin-based two-step fluorescence approach with our Vectafluor™ Excel Amplified Dylight® Antibody kits (see page 16).

Species Cross-Reactivity

Beyond the choices provided in the Selection Guide (pages 4-5), consideration should be given to the species of the tissue under examination and the species of the primary antibody. In cases of closely related species, it is recommended to use a secondary antibody that has been specifically adsorbed to remove cross-reacting antibodies. In instances where a mouse primary antibody is being applied to mouse tissue sections, it is recommended to use the M.O.M.* Immunodetection System (see pages 22-23).

Multiple Antigen Labeling

The visualization of two or more antigens on the same tissue section requires careful planning and specific reagent selection to generate unequivocal and reproducible staining results. We have recently introduced our Vectafluor™ Duet IF Double Labeling Kits that provide convenience and a straightforward approach to this often difficult and time-consuming application (see page 13).

Choosing fluorophores

Immunofluorescence detection reagents are labeled with fluorophores that absorb (excitation) and emit (emission) light at specific wavelengths. Fluorophores suitable for immunofluorescence are available across the complete visible light spectrum. The light source and filter cubes in a particular microscope must match the excitation and emission requirements of the specific fluorophore to achieve the optimal signal-to-noise ratios. For example, the absorption and emission peak wavelengths of fluorescein are 495 nm and 515 nm, respectively. Therefore, an excitation light source that is near 495 nm will yield the greatest emission signal. An emission filter that spans 515 nm will capture the emitted signal. These wavelengths are fixed properties of the fluorophores and the filter; and when properly paired, the system will yield the strongest signal and lowest background.

Choosing fluorophores

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>Color</th>
<th>Excitation Max (nm)</th>
<th>Emission Max (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCA</td>
<td>Blue</td>
<td>350</td>
<td>450</td>
</tr>
<tr>
<td>Dylight® 488</td>
<td>Green</td>
<td>493</td>
<td>518</td>
</tr>
<tr>
<td>Fluorescein</td>
<td>Green</td>
<td>495</td>
<td>515</td>
</tr>
<tr>
<td>Cy®3</td>
<td>Orange</td>
<td>550</td>
<td>570</td>
</tr>
<tr>
<td>Rhodamine</td>
<td>Orange</td>
<td>550</td>
<td>575</td>
</tr>
<tr>
<td>Dylight® 549</td>
<td>Orange</td>
<td>562</td>
<td>576</td>
</tr>
<tr>
<td>Phycoerythrin</td>
<td>Red-Orange</td>
<td>565</td>
<td>574</td>
</tr>
<tr>
<td>Dylight® 594</td>
<td>Red</td>
<td>593</td>
<td>618</td>
</tr>
<tr>
<td>Texas Red®</td>
<td>Red</td>
<td>595</td>
<td>615</td>
</tr>
<tr>
<td>Cy®5</td>
<td>Far Red</td>
<td>649</td>
<td>670</td>
</tr>
<tr>
<td>Dylight® 649</td>
<td>Far Red</td>
<td>652</td>
<td>672</td>
</tr>
</tbody>
</table>
All antibodies available from Vector Laboratories for immunological applications are prepared using optimized, proprietary immunization schedules that produce high-quality antibodies. The antibodies have the optimal degree of labeling to maximize signal output without compromising antibody specificity or affinity.

We offer researchers a range of traditional and contemporary conjugated fluorophores, including fluorescein, rhodamine, Texas Red®, AMCA and phycoerythrin. DyLight® dyes offer greater photostability, pH independence and brighter fluorescence than conventional fluorophores. DyLight® dye-conjugated antibodies are ideal for cell- and tissue-based immunofluorescence and a variety of other applications. The DyLight® dye conjugates are stable at pH 4-9 and compatible with many buffers and diluents.

The Cy®3 and Cy®5 Dyes offer bright and stable fluorescence and are used in a variety of applications. Cy®3 dye is bright orange with an excitation/emission of 550 nm/570 nm. Cy®5 is often used as an additional label in multiplexing protocols or in super resolution imaging because of its photo switchable properties.

We offer a comprehensive range of fluorophore-conjugated secondary antibodies. These affinity-purified, highly specific antibodies, directed against the most commonly used primary antibody target species, are available with a wide choice of fluorophores and are presented in a concentrated format.

Table 2. Fluorophore-conjugated secondary antibodies.

<table>
<thead>
<tr>
<th>Product</th>
<th>AMCA</th>
<th>Fluorescein</th>
<th>Texas Red®</th>
<th>Cy®3</th>
<th>Cy®5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Mouse IgG (H+L), made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Mouse IgG (H+L), rat-absorbed, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Mouse IgM, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rabbit IgG (H+L), made in rabbit</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rabbit IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rat IgG (H+L), made in rat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rat IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Sheep IgG (H+L), made in rabbit</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Sheep IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IIF (H+L), made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgG, gamma chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgM, gamma chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgM, kappa chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human Lambda Chain, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
</tbody>
</table>

Fluorophore-Conjugated Secondary (Target species) Antibodies

- Rabbit IgG
- Mouse IgG
- Mouse IgM
- Human IgG
- Rat IgG
- Goat IgG
- Sheep IgG

Choosing a Detection System

We offer researchers a range of traditional and contemporary conjugated fluorophores, including fluorescein, rhodamine, Texas Red®, AMCA and phycoerythrin. DyLight® dyes offer greater photostability, pH independence and brighter fluorescence than conventional fluorophores. DyLight® dye-conjugated antibodies are ideal for cell- and tissue-based immunofluorescence and a variety of other applications. The DyLight® dye conjugates are stable at pH 4-9 and compatible with many buffers and diluents.

The Cy®3 and Cy®5 Dyes offer bright and stable fluorescence and are used in a variety of applications. Cy®3 dye is bright orange with an excitation/emission of 550 nm/570 nm. Cy®5 is often used as an additional label in multiplexing protocols or in super resolution imaging because of its photo switchable properties.

Table 2. Fluorophore-conjugated secondary antibodies.

<table>
<thead>
<tr>
<th>Product</th>
<th>AMCA</th>
<th>Fluorescein</th>
<th>Texas Red®</th>
<th>Cy®3</th>
<th>Cy®5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Mouse IgG (H+L), made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Mouse IgG (H+L), rat-absorbed, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Mouse IgM, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rabbit IgG (H+L), made in rabbit</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rabbit IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rat IgG (H+L), made in rat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Rat IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Sheep IgG (H+L), made in rabbit</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Sheep IgG (H+L), made in goat</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IIF (H+L), made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgG, gamma chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgM, gamma chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human IgM, kappa chain specific, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
<tr>
<td>Anti-Human Lambda Chain, made in mouse</td>
<td>1.1000</td>
<td>1.1000</td>
<td>1.1000</td>
<td>26.900</td>
<td>26.900</td>
</tr>
</tbody>
</table>

Fluorophore-Conjugated Secondary (Target species) Antibodies

- Rabbit IgG
- Mouse IgG
- Mouse IgM
- Human IgG
- Rat IgG
- Goat IgG
- Sheep IgG

Choosing a Detection System

We offer researchers a range of traditional and contemporary conjugated fluorophores, including fluorescein, rhodamine, Texas Red®, AMCA and phycoerythrin. DyLight® dyes offer greater photostability, pH independence and brighter fluorescence than conventional fluorophores. DyLight® dye-conjugated antibodies are ideal for cell- and tissue-based immunofluorescence and a variety of other applications. The DyLight® dye conjugates are stable at pH 4-9 and compatible with many buffers and diluents.

The Cy®3 and Cy®5 Dyes offer bright and stable fluorescence and are used in a variety of applications. Cy®3 dye is bright orange with an excitation/emission of 550 nm/570 nm. Cy®5 is often used as an additional label in multiplexing protocols or in super resolution imaging because of its photo switchable properties.
VectaFluor™ Ready-To-Use Antibody Reagents

As investigators push research boundaries and require more sensitive, photo-stable fluorescent products, we have met this demand by developing a range of DyLight® dye-conjugated secondary antibodies and novel detection kits that we have named VectaFluor™ reagents. The VectaFluor™ products are presented as pre-diluted, ready-to-use (R.T.U.) solutions that reduce optimization requirements at the researchers’ end, thereby saving time and minimizing potential dilution errors which assist with greater consistency in collaborative efforts across lab environments.

Maximum performance is achieved when these VectaFluor™ reagents are used in combination with our VECTASHIELD® Antifade Mounting Media (see pages 24-27).

VectaFluor™ R.T.U. Antibody Kits

The VectaFluor™ Ready-to-Use (R.T.U.) DyLight® dye-conjugated secondary antibodies offer maximum convenience for fluorescence staining of cells and tissues. These affinity-purified, highly cross-adsorbed secondary antibodies are conjugated to DyLight® dyes in a manner that ensures the maximum degree of labeling without compromising antibody affinity or specificity. DyLight® dyes offer advantages such as bright fluorescence, excellent photostability and pH independence.

VectaFluor™ R.T.U. Antibody Reagents are suitable for use with rabbit, mouse, goat, sheep, and bovine IgG primary antibodies and are supplied as ready-to-use, pre-diluted, stabilized solutions (15 ml) with ready-to-use 2.5% normal horse serum (15 ml) for blocking.

VectaFluor™ R.T.U Antibody Kits

- Rabbit IgG
- Mouse IgG
- Goat IgG

DyLight® 594 Kits

- Excitation: 593 nm
- Emission: 618 nm
- Color: Red

DyLight® 488 Kits

- Excitation: 493 nm
- Emission: 518 nm
- Color: Green

VectaFluor™ Duet Immunofluorescence Double Labeling Kits

Apply two colors in one step using the VectaFluor™ Duet IF Double Labeling Kits. These kits save time and effort in double-labeling immunofluorescence (IF) protocols, which can be long and tedious. The kits are configured to detect a mouse and a rabbit primary antibody with green and red fluorescence in one step.

- Two colors, one step
- Ready-to-use (R.T.U.)
- Robust cocktail formulation of DyLight® anti-mouse IgG and DyLight® anti-rabbit IgG

Two kit configurations are available:

- Selection of a VectaFluor™ Duet IF Double Labeling Kit format is based on individual preference; however, certain parameters should be considered. For example, prevalence of the respective target antigens within a tissue section, and whether the more abundant antigen will be viewed by a green or red signal are important factors. Also consider possible overlap or co-localization of the antigens and which antibody combination would produce optimal results.

VectaFluor™ Duet Immunofluorescence Double Labeling Kit Contents:

- 15 ml 2.5% Normal Horse Serum for blocking, R.T.U.
- 15 ml VectaFluor™ Duet Reagent, R.T.U.

The affinity-purified, highly cross-adsorbed secondary antibodies are conjugated to DyLight® dyes in a manner that maximizes the degree of labeling without compromising antibody affinity or specificity. The red and green DyLight® dye-conjugated anti-mouse and anti-rabbit antibodies are then combined into a robust, stable cocktail formulation that yields sensitive and consistent dual staining. The VectaFluor™ Duet IF Double Labeling Kit is compatible with fluorescence staining of cells and tissues.

Product Catalog Number

<table>
<thead>
<tr>
<th>Product</th>
<th>DyLight® 488 (Green)</th>
<th>DyLight® 594 (Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VectaFluor™ Anti-Rabbit IgG, made in horse</td>
<td>01-1763</td>
<td>01-1764</td>
</tr>
<tr>
<td>VectaFluor™ Anti-Mouse IgG, made in horse</td>
<td>01-2765</td>
<td>01-2766</td>
</tr>
<tr>
<td>VectaFluor™ Anti-Goat IgG, made in horse</td>
<td>01-4767</td>
<td>01-4768</td>
</tr>
</tbody>
</table>

Color:

- Mouse Anti-Goat IgG (MA1402)
- Rabbit Anti-Mouse IgG (M0402)

Product

- Vector Anti-PSA (goat), VectaFluor™ DyLight® 594 Anti-Goat IgG. Mounted in VECTASHIELD® HardSet™ Mounting Medium.
- Prostate: Anti-PSA (goat), VectaFluor™ Duet Reagent, DyLight® 488 Anti-Mouse (green)/DyLight® 594 Anti-Rabbit (red). Mounted in VECTASHIELD® HardSet™ Mounting Medium.

Product

- Prostate: Mouse Anti-Cytokeratin (AE1/AE3) and Rabbit Anti-Smooth Muscle Actin detected simultaneously with VectaFluor™ Duet IF Double Labeling Kit, DyLight® 488 Anti-Mouse (green)/DyLight® 594 Anti-Rabbit (red). Mounted in VECTASHIELD® HardSet™ Mounting Medium.
- Colon: Mouse Anti-Cytokeratin (AE1/AE3) and Rabbit Anti-Smooth Muscle Actin detected simultaneously with VectaFluor™ Duet IF Double Labeling Kit, DyLight® 488 Anti-Mouse (green)/DyLight® 594 Anti-Rabbit (red). Mounted in VECTASHIELD® HardSet™ Mounting Medium.
VectaFluor™ Excel Amplified Staining System

The VectaFluor™ Excel Amplified Staining System offers a convenient, non-biotin amplification method for fluorescence applications. This system uses an Amplifier Antibody – a specially prepared, high-affinity, unconjugated anti-mouse IgG or anti-rabbit IgG antibody produced in goat – followed by VectaFluor™ DyLight® dye-conjugated anti-goat IgG antibody.

The affinity-purified, highly cross-adsorbed anti-goat IgG antibody is conjugated to DyLight® dyes in a manner that ensures maximum degree of labeling without compromising antibody affinity or specificity. DyLight® dyes offer advantages such as bright fluorescence, excellent photostability and pH independence.

- Stabilized, ready-to-use solutions
- Non-biotin signal amplification
- High sensitivity
- Low background

VectaFluor™ Excel Kit Contents:
- 15 ml 2.5% Normal Horse Serum for blocking, R.T.U.
- 15 ml Amplifier Antibody, R.T.U. (goat anti-mouse IgG or goat anti-rabbit IgG)
- 15 ml VectaFluor™ DyLight® dye-conjugated Horse Anti-Goat IgG, R.T.U.

Frequently Asked Questions:

1) **Can the VectaFluor™ Excel kits be applied to fixed cultured cells?**

 Yes, investigators have successfully applied these kits on fixed cultured cells directly, and cultured cells that have been formalin-fixed and paraffin-embedded. Please see references 1 and 2 below, respectively.

2) **Are the VectaFluor™ Excel Kits compatible with other fluorescent secondary antibodies for double staining applications?**

 Yes, as indicated in reference 3 below. For this application to be successful however, investigators must use detection reagents raised in species that will not cross-react with the detection reagents of the VectaFluor™ Excel kit.

3) **What are the advantages of using the VectaFluor™ Excel kits compared with secondary antibodies directly conjugated with fluorophores?**

 The main advantage of using the VectaFluor™ Excel kits is the increase in sensitivity the Amplifier Antibody generates. In most staining applications, investigators would see an increase of at least three to four-fold over that of a secondary antibody directly conjugated with a fluorophore. This increase in sensitivity enables unambiguous visualization of weakly expressed antigens, as well as further dilution of potentially expensive primary antibodies.

4) **Can the VectaFluor™ Excel kits be applied to any species of tissue?**

 The VectaFluor™ Excel kits were developed and optimized on human tissue sections. As with any secondary detection system, investigators should note potential cross-reactivity between the reagents being applied to a tissue section and inherent proteins. The VectaFluor™ Excel Anti-Rabbit IgG kits can be applied to rodent and primate species. The VectaFluor™ Excel Anti-Mouse IgG Kits are recommended for non-rodent tissues. Note however, that due to the VectaFluor™ Excel Anti-Goat IgG Reagent supplied in all VectaFluor™ Excel kits, recognition of proteins in goat, sheep, and bovine species may occur.

References:

The fluorophore-conjugated streptavidin and avidin reagents are highly purified and have low non-specific binding. These fluorescent conjugates can be used to detect biotinylated secondary antibodies and other macromolecules in various applications, including immunofluorescence, in situ hybridization and flow cytometry. The fluorescent signal can be amplified using biotinylated secondary antibodies and fluorophore-conjugated streptavidin or avidin.

Anti-Streptavidin and Anti-Avidin Antibody Reagents

Use of the Biotinylated Anti-Streptavidin or Biotinylated Anti-Avidin antibodies is an ideal approach to increase sensitivity in (strept)avidin/biotin detection systems. These antibodies bind to streptavidin or avidin through both of their antigen-binding sites and the covalently-attached biotin residues. After the first application of a fluorophore-conjugated streptavidin or avidin, the signal is amplified by incubation with a Biotinylated Anti-Streptavidin or a Biotinylated Anti-Avidin antibody. That incubation is followed by a second incubation with fluorophore-conjugated streptavidin or avidin. This multi-layered approach accumulates more fluorophores at the target site and can provide a multi-fold amplification.

Biotinylated Anti-Avidin and Biotinylated Anti-Streptavidin amplification is ideal for the following applications:

- Immunofluorescence / Immunohistochemistry
- In situ hybridization
- Microarray assays
- ELISAs
- Blotting

Fluorophore-Conjugated Streptavidin/Avidin Reagents

The fluorophore-conjugated streptavidin and avidin reagents are highly purified and have low non-specific binding. These fluorescent conjugates can be used to detect biotinylated secondary antibodies and other macromolecules in various applications, including immunofluorescence, in situ hybridization and flow cytometry. The fluorescent signal can be amplified using biotinylated secondary antibodies and fluorophore-conjugated streptavidin or avidin.

Streptavidin/Avidin Fluorophores

- Blue (AMCA)
- Green (DyLight® 488 and Fluorescein)
- Orange (DyLight® 549, Cy®3 and Phycocyanin)
- Red (DyLight® 594 and Texas Red®)
- Far Red (DyLight® 649, and Cy®5)

Tonsil (FFPE) was antigen-retrieved with Antigen Unmasking Solution and stained with Anti-Pan Cytokeratin (mouse; clone AE1/AE3), Biotinylated Horse Anti-Mouse IgG, and Cy®5 Streptavidin.

Tonsil (FFPE) was antigen-retrieved with Antigen Unmasking Solution and stained with Anti-Pan Cytokeratin (mouse; clone AE1/AE3), Biotinylated Horse Anti-Mouse IgG and Cy®3 Streptavidin. Mounted in VECTASHIELD® HardSet™ Mounting Medium with DAPI.

FastTag® Biotin-conjugated human chromosome 1 centromere-specific probe detected with Texas Red® Avidin DCS, Biotinylated Anti-Avidin and Texas Red® Avidin DCS (red). Mounted in VECTASHIELD® Mounting Medium with DAPI (blue).

FastTag® Biotin-conjugated human chromosome 1 centromere-specific probe detected with Fluorescein Avidin DCS, Biotinylated Anti-Avidin and Fluorescein Avidin DCS (yellow-green). Mounted in VECTASHIELD® Mounting Medium with Propidium Iodide (red).

Choosing a Detection System

Product

<table>
<thead>
<tr>
<th>AMCA</th>
<th>Fluorescein</th>
<th>Rhodamine</th>
<th>Texas Red®</th>
<th>Avidin-AEC</th>
<th>Fluorescein, Texas Red®</th>
<th>DyLight® 488</th>
<th>DyLight® 549</th>
<th>DyLight® 594</th>
<th>DyLight® 649</th>
<th>Phycocyanin</th>
<th>Cy®3</th>
<th>Cy®5</th>
</tr>
</thead>
</table>
Secondary and Tertiary Detection Reagents

Our secondary antibodies are prepared by hyper-immunizing animals in a manner that produces high affinity antibodies. These are then purified by an affinity chromatography procedure designed to remove any low affinity antibodies. Cross-reactivities that can interfere with specific labeling are removed by solid-phase adsorption techniques. The final product is then subjected to rigorous quality-control assays including immunodiffusion, solid-phase enzyme immunoassays, gel electrophoresis, solid-phase binding assays and IHC tissue staining. These unconjugated antibodies are used to generate our enzyme conjugated and biotinylated secondary antibodies.

Biotinylated and Unconjugated Secondary Antibodies

Our high-affinity, purified, biotinylated and unconjugated secondary antibodies are manufactured under controlled conditions to retain maximum specificity and affinity. Our secondary antibodies are subjected to rigorous quality control assays and can be used for tissue and cell staining, ELISAs, and blotting.

Enzyme-Conjugated Secondary Antibodies

Our high-affinity, purified antibodies are cross-linked with alkaline phosphatase (AP) or horseradish peroxidase (HRP) of the highest specificity. Our conjugation method ensures the maximum preservation of enzyme activity and antibody specificity. Recommended applications include tissue staining, ELISAs, and blotting.

Avidin and Streptavidin Enzyme Conjugates

Our enzyme-conjugated avidin and streptavidin are suitable for use in solid-phase assays, tissue- or cell-staining systems, and blotting. The conjugates are produced in optimized ratios with enzymes of the highest specific activity. Covalent linkages are specifically chosen to provide stable, highly active conjugates.
Species on Species Detection (Mouse)

Solutions when your primary antibody is the same species as your specimen.

When a primary antibody is the same species as the specimen, the secondary antibody cannot distinguish between the endogenous immunoglobulins and the primary antibody. This can result in high background staining that obscures antigen-specific staining. Mouse on Mouse detection is especially important because of the vast number of primary antibodies made in mouse and the wide use of mice in model systems, xenografts, and other applications.

Vector Laboratories M.O.M.® Immunodetection systems are specifically designed to localize mouse primary antibodies on mouse tissue while avoiding background staining. These M.O.M.® Kits contain our proprietary M.O.M.® Mouse Ig Blocking Reagent. M.O.M.® Kits are available based on either avidin-biotin technology (M.O.M.® Elite®, ABC Kit; Fluorescein Kit, or Basic Kit) or polymer technology (M.O.M.® ImmPRESS™ HRP Polymer Kit). Use the M.O.M.® Immunodetection systems to introduce two or more different labels using a multiple antigen labeling protocol. You can detect several mouse primary antibodies on the same tissue section, regardless of the species of the tissue. Excellent staining results for a once difficult application have now become routine with the Vector® M.O.M.® System.

- Significantly reduces endogenous mouse Ig staining when using mouse primary antibodies on mouse tissue
- Simple protocols
- Eliminates tedious calculations
- Eliminates primary antibody prebinding steps
- Clear, crisp, specific staining of antigens of interest
- Compatible with fluorescent or enzyme-based detection
- Available with or without enzyme or fluorophore

Recommended applications:
- Studies in genetically engineered mice
- Transgenic and knock-out models
- Mouse xenograft tissue
- Normal mouse tissue

Mouse on Mouse (M.O.M.®) Immunodetection Kits

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.O.M.® Peroxidase Kit</td>
<td>PK-2200</td>
</tr>
<tr>
<td>M.O.M.® Fluorescein Kit</td>
<td>FM-2200</td>
</tr>
<tr>
<td>M.O.M.® Basic Kit</td>
<td>BMK-2212</td>
</tr>
<tr>
<td>M.O.M.® ImmPRESS™ HRP Polymer Kit</td>
<td>MP-2400</td>
</tr>
<tr>
<td>M.O.M.® Mouse Ig Blocking Reagent</td>
<td>MB-2113</td>
</tr>
<tr>
<td>M.O.M.® Biotinylated Anti-Mouse Ig Reagent*</td>
<td>MB-2225</td>
</tr>
<tr>
<td>M.O.M.® ImmPRESS™ HRP Polymer Anti-Mouse Ig Reagent*</td>
<td>MB-2400</td>
</tr>
</tbody>
</table>

* This reagent must be used with the M.O.M.® Mouse Ig Blocking Reagent (MB-2113). It is not intended to be a stand-alone reagent for mouse on mouse applications.
Mounting Media

Choosing an effective mounting medium is especially important for immunofluorescence imaging. Fluorophores are susceptible to photobleaching and fading from both the imaging excitation light and during storage. The right mounting medium will protect your samples for short- and long-term use and archiving.

[Image: Rat muscle (FFPE): GFAP (red) and NF200 (green). Counterstained and coverslipped with VECTASHIELD® Mounting Medium with DAPI (blue). The double IF was performed by Dr. Lynn Dong, Dept of Bioscience, Cornell University, Ithaca, NY, USA.]

VECTASHIELD® Antifade Mounting Media

VECTASHIELD® Antifade Mounting Media formulations offer unsurpassed protection against fading and photobleaching. The VECTASHIELD® and VECTASHIELD® HardSet® Antifade Mounting Media are well-established, market-leading products that complete the workflow and provide excellent signal retention for image acquisition and specimen archiving.

- Inhibits photobleaching of most fluorophores, dyes, fluorescent proteins and stains
- Ideal refractive index
- Ready to use, no warming necessary
- Continues to inhibit photobleaching even after prolonged storage of mounted slides
- Easy-to-use
- With or without nuclear or cytoskeletal counterstain
- Hardening or non-hardening formulations

VECTASHIELD® Antifade Mounting Medium

VECTASHIELD® Antifade Mounting Medium is a glycerol-based, aqueous mountant that remains a viscous liquid on the slide rather than solidifying. After mounting, cover-slipped slides will not readily dry out, enabling you to review them for weeks without the need for sealing. For prolonged storage, coverslips can be permanently sealed with nail polish applied on the coverslip perimeter.

[Image: One optical section of a whole mouse lens stained with phalloidin (F-actin, green) and DAPI (nuclei, red). This image was captured by Dr. Catherine Cheng, Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.]

VECTASHIELD® HardSet™ Antifade Mounting Medium

VECTASHIELD® HardSet™ Antifade Mounting Medium is an aqueous mountant that hardens at room temperature in as little as 20 minutes. This mounting medium provides easy slide handling, eliminates the need to secure the coverslip with nail polish, and is convenient for use with oil immersion microscopy. Available with or without DAPI or TRITC-phalloidin counterstain.

<table>
<thead>
<tr>
<th>Product</th>
<th>No Counterstain</th>
<th>DAPI</th>
<th>PI</th>
<th>TRITC-Phalloidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTASHIELD® Mounting Medium</td>
<td>H-1000</td>
<td>11:1200</td>
<td>11:1300</td>
<td></td>
</tr>
<tr>
<td>(non-hardening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTASHIELD® HardSet™ Mounting Medium (hardening)</td>
<td>H-1400</td>
<td>11:1200</td>
<td>11:1300</td>
<td></td>
</tr>
</tbody>
</table>

[Image: Structural illumination super resolution photomicrograph of a ciliated bovine airway epithelial cell labeled for acetylated alpha tubulin (cilia marker; green), phosphodiesterase 5 (red) nuclei (blue). Sample prepared and image taken by Michael E. Price, University of Nebraska Medical Center. With assistance of Janice A. Taylor and James R. Talaska, Advanced Microscopy Core Facility, University of Nebraska Medical Center, NE, USA.]

[Image: Mouse embryonal fibroblasts: Anti-Integrin (m) detected with DyLight® 488 Anti-Mouse IgG, mounted in a 1:1 mixture of VECTASHIELD® HardSet™ Mounting Medium with DAPI and VECTASHIELD® HardSet™ Mounting Medium with TRITC-Phalloidin.]

vectorlabs.com
VECTASHIELD® Mounting Media and Fluorophore Compatibility

VECTASHIELD® Mounting Media are the most widely referenced antifade mounting media for immunofluorescence applications. Currently over 60,000 published references cite VECTASHIELD® Mounting Media and describe compatibility with over 130 fluorophores and fluorescent markers. This data underscores the prominence of VECTASHIELD® reagents in this application.

The graphic below highlights the most commonly referenced fluorophores used in combination with VECTASHIELD® Antifade Mounting Media.

The fluorescent compounds listed in the table below are select reagents that are also cited as being successfully used in combination with VECTASHIELD® Antifade Mounting Media. The range of these compounds, from traditional to contemporary, across a broad spectral range, and used in an array of applications, showcase the versatility of VECTASHIELD® reagents. For a comprehensive list of the >130 fluorophores and fluorescent markers that have been used with VECTASHIELD® products please visit our website at: vectorlabs.com/vslist

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acridine orange</td>
<td>Cyanin</td>
</tr>
<tr>
<td>Alexa Fluor® 350</td>
<td>dihydroethidium</td>
</tr>
<tr>
<td>Alexa Fluor® 647</td>
<td>DRAQ®</td>
</tr>
<tr>
<td>Atto dyes</td>
<td>Evans Blue</td>
</tr>
<tr>
<td>BODIPY®</td>
<td>fast blue</td>
</tr>
</tbody>
</table>

VECTASHIELD® Mounting Media Formats and Applications

The illustration above features established applications for our antifade mounting media formats. VECTASHIELD® Antifade Mounting Media are widely utilized to protect the inherent fluorescent properties of traditional and contemporary fluorophores in many applications using epifluorescence and confocal microscopy.

The versatility of the original VECTASHIELD® format solves the demands of labs and core facilities using multiple platforms and fluorescent markers. Furthermore, VECTASHIELD® reagents are also recognized as leading media in emerging techniques such as super resolution microscopy (SRM).

Of the SRM techniques currently being performed, the properties of VECTASHIELD® Antifade Mounting Media have been found to be advantageous in stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM).

* Super Resolution (STORM and SIM) select references:
VectaCell™ Products for Live Cell Imaging

Whereas immunofluorescence staining gives a snapshot of a cell or tissue at a specific time point, live cell imaging allows the observation of biological processes over a period of time. This is important for studying biological functions, interactions, and structures in various applications (e.g., the effects of drugs and other biomolecules).

VectaCell™ reagents enable and enhance live cell imaging studies. VectaCell™ Trolox Antifade Reagent reduces phototoxicity and photobleaching of reagents to increase cell viability and prolong signal. VectaCell™ Acridine Orange and VectaCell™ Rhodamine 123 reagents offer convenience and ease of use for visualizing different cellular components.

VectaCell™ Trolox Antifade Reagent

VectaCell™ Trolox Antifade Reagent is an antifading additive for live cell imaging. VectaCell™ Trolox Antifade Reagent contains both Trolox and its oxidized form Trolox-quinone. This redox system reduces photo-bleaching and blinking during live cell imaging.

Trolox is a water-soluble and cell-permeable analog of vitamin E that efficiently prevents formation of different reactive oxygen species, such as singlet oxygen (\(\text{O}_2^*\)), superoxide anion (\(\text{O}_2^-\)) or hydrogen peroxide (\(\text{H}_2\text{O}_2\)). Photo-excitation of a fluorophore generates reactive oxygen species that can lead to photo-bleaching and oxidative damage in cells. Trolox has a cytoprotective effect and low cytotoxicity for different cell lines.

Live Cell Imaging of Organelles

VectaCell™ Acridine Orange is a fluorescent dye that stains acidic organelles, such as lysosomes, autosomes or yeast vacuoles. At low pH inside organelles, the dye will emit an orange fluorescence (peak at 590 nm). For optimal endosome visualization, use a blue light excitation (475 nm).

VectaCell™ Rhodamine 123 is a fluorescent dye for staining active mitochondria. This dye accumulates in the mitochondrial membrane based on membrane polarization. Excitation peak at 505 nm, emission peak at 534 nm.

Accessory Reagents

VECTABOND® Reagent Tissue Section Adhesive

VECTABOND® Reagent chemically modifies the surface of glass to form a highly adherent charged surface. This charge significantly increases the adherence of both frozen and paraffin-embedded tissue sections and cell preparations to glass microscope slides and coverslips. Tissue sections will remain attached even when subjected to the most extreme conditions, such as high-temperature antigen retrieval and in situ hybridization. VECTABOND® Reagent-treated slides can be stored indefinitely.

ImmEdge™ Hydrophobic Barrier Pen

The ImmEdge™ Pen is a hydrophobic barrier (PAP) pen for immunohistochemistry and in situ hybridization. It provides a water-repellent barrier that keeps reagents localized on tissue specimens and prevents mixing of reagents when multiple sections are mounted on the same slide.

- **Heat-stable**
- **Insoluble in alcohol and acetone**
- **Stable for use with buffers with and without detergent**
- **Completely removed by all commonly used xylene and xylene-substitute clearing agents**
- **Contains no ozone-depleting solvents**
- **Compatible with both enzyme- and fluorescence-based detection systems**

ImmPrint™ Histology Pen

The ImmPrint™ Histology Pen is a permanent marking pen designed for writing on glass microscope slides, tissue cassettes, and most hard surfaces. Unlike other pens commonly used for histology, the ImmPrint™ Pen has a smooth writing tip that resists drying out.

- **High-density, fast-drying, black ink**
- **Resistant to most organic solvents encountered in histological applications**

Control Antibodies

These antibodies are IgG preparations for use as controls for primary antibodies made in rabbit, mouse, rat, or goat. Each antibody has been purified from pooled serum of healthy adult animals and contains a spectrum of the IgG subclasses. When applied appropriately, these controls will help determine whether the primary antibody staining signal is specific for the antigen or whether staining is the result of non-specific adsorption of primary antibody to tissue sites.

Antigen Unmasking Solutions

Our Antigen Unmasking Solutions are highly effective at revealing antigens in formalin-fixed, paraffin-embedded tissue sections when used in combination with a high-temperature treatment procedure. We offer two formulations of Antigen Unmasking Solution: Citrate-based solution (pH 6.0) and Tris-based solution (pH 9.0), each supplied as 100X concentrated stocks.
Blocking Background Signal

Blocking agents minimize background signal from endogenous enzyme activity, biotin, and non-specific binding of tissue elements (charged particles, macromolecules, Fc receptors) with detection reagents. For IF applications special consideration should be given to the presence of autofluorescence.

Vector® TrueVIEW™ Autofluorescence Quenching Kit

Vector® TrueVIEW™ Autofluorescence Quenching Kit provides a novel way to remove unwanted fluorescence in tissue sections due to aldehyde fixation, red blood cells, and structural elements such as collagen and elastin. This unique formulation binds and effectively quenches the autofluorescent elements in even the most problematic tissues, such as kidney, spleen and pancreas.

The use of Vector® TrueVIEW™ Quenching reagent leads to significant enhancement in overall signal-to-noise in most immunofluorescence assays.

Vector® TrueVIEW™ Quenching reagent is a unique approach to diminish unwanted autofluorescence from non-lipofuscin sources, that retains the specific fluorescent antigen staining. The quenching action of the kit reagents therefore, provides the investigator with a clear, unambiguous, “true view” visualization of the intended target.

BLOXALL® Endogenous Peroxidase and Alkaline Phosphatase Blocking Solution

BLOXALL® is compatible with formalin-fixed, paraffin-embedded tissue sections, frozen tissue sections, and cell preparations. It is supplied ready-to-use in a convenient dropper bottle and only requires a brief 10-minute incubation.

Levamisole Solution

Specifically inhibits endogenous alkaline phosphatase activity that is added to the alkaline phosphatase substrate solution. It is supplied ready-to-use in a convenient dropper bottle.

Avidin/Biotin and Streptavidin/Biotin Blocking Kits

Both kits block all endogenous biotin and biotin receptors. Due to differing binding affinities and characteristics, kit selection is matched to the specific avidin or streptavidin detection system being used. Supplied ready-to-use in convenient dropper bottles.

Normal Sera and 2.5% Normal Sera

All our sera products are pooled samples collected from healthy adult animals, heat-treated and centrifuged to remove precipitates and then filtered. These sera are intended to be used for blocking non-specific binding or as an antibody diluent.

Bovine Serum Albumin (BSA)

Intended to be used as a diluent or a blocking agent and is free of impurities present in other grades of BSA which can introduce artifacts or increase background staining.

Carbo-Free™ Blocking Solution

A protein-based agent that is essentially free of glycoproteins and low in contaminating aldehydes. Can be used to block non-specific binding or as an antibody diluent.

R.T.U. Animal-Free Blocker™ and Diluent

A plant protein-derived solution intended for cell- and tissue-based IHC and IF applications. Can be used as an alternative to normal sera, BSA, casein and non-fat dry milk. Suitable for use with both HRP and AP enzyme conjugates and detection systems. Supplied as a ready-to-use solution, ideal in multiple antigen labeling IHC to streamline blocking.

Animal-Free Blocker™ (5x concentrate solution)

Similar to the R.T.U. format, this plant protein-derived blocking agent and diluent is an alternative to normal sera, BSA, casein and non-fat dry milk, however this concentrate is intended primarily for blotting applications.

Why TrueVIEW™ Quencher?

- Specific reduction of autofluorescence from aldehyde fixation
- Improved signal-to-noise ratio
- Effective in even the most challenging tissues
- Easy-to-use, one-step method
- Quick 5 min incubation
- Compatible with a wide selection of fluorophores
- Compatible with standard epifluorescence and confocal laser microscopes

Human Pancreas (FFPE). Stained for D 34 (using anti-mouse DyLight® 594, mouse anti-CD20 (red) and rabbit anti-Ki67 (green). Coverslipped with VECTASHIELD® HardSet™ Antifade Mounting Medium. Note significant reduction of autofluorescence in treated section (above) with the retention of specific staining.

Patent pending formulation.

"I would definitely use this reagent in the future – it is quick and reliable on multiple tissue types."

– Dr. K. Sadlier, Postdoctoral Fellow MIT Boston Children’s Hospital
Contact Details

US Office
Vector Laboratories, Inc.
30 Ingold Road
Burlingame, CA 94010, USA
Tel: +1 (650) 697-3600
Tel (Ordering and Technical Support): +1 (800) 227-6666
Fax: +1 (650) 697-0339
Customer Service: vector@vectorlabs.com
Technical Support: technical@vectorlabs.com
International Inquiries: techintl@vectorlabs.com

UK Office
Vector Laboratories Ltd.,
3 Accent Park, Bakewell Road, Orton Southgate,
Peterborough, PE2 6XS, United Kingdom
Tel: +44 (0) 1733 237999
Customer Service: vector@vectorlabs.co.uk
Ordering: sales@vectorlabs.co.uk
Technical Support: technical@vectorlabs.co.uk

Ordering Information
Order online at: www.vectorlabs.com
Orders may also be placed by email, telephone, fax, or mail.
Please include the following with each order:
• Product name and catalog number
• Unit size and quantity
• Billing and shipping addresses
• Purchase order number
• Name, phone number, address and email address of person placing order

Orders using VISA, Mastercard, or American Express are accepted and processed immediately. Telephone orders over $2000 may require written confirmation. A confirmation should be boldly marked “Confirming Order: Do Not Duplicate.” Duplicate shipments due to incorrectly marked confirming orders cannot be returned for credit. No returned product will be accepted or credited without prior authorization from Vector Laboratories. Please contact us to discuss discounts for custom or large orders.

Payment / shipping terms:
Payment terms: net 30 days. Prices are FCA Burlingame, California. Shipping charges will be prepaid and added to the invoice. Orders are usually shipped the same day they are received. Unless requested otherwise, all products are shipped 2nd-day air. RCA60 products are shipped in the USA only according to federal transportation regulations requiring additional shipping charges. We require a written confirmation for all RCA60 products.

International Orders
Vector products are also available from over 50 distributors worldwide. Please contact us or visit our website for a complete listing of these representatives.

Although provided in a highly purified form, our products are not intended for clinical diagnosis or drug use, nor have they been packaged under sterile conditions. All products listed in this catalog are for research purposes only. The listing of any product in this catalog does not imply the absence of a patent covering its use, does not constitute license under any existing or pending patent, nor is it intended or implied as a recommendation for the use of such products in infringement of any patent. The responsibility for determining the existence of such patents rests solely with the user.

Trademarks of Vector Laboratories: ABC-AbF, Animal-Free Blocker, BLOXALL, ECL, EndTag, FastTag, Fusion Aid, ImmEdge, ImmPRESS, ImPrInt, M.O.M., NEUROBITIN, Nitro p.s., PHOTOATROB, ProDr, QuantaTag, TransHER, VectorAID, VectorCell, VectorMount, VECTASHIELD, VECTASCREEN, VectaStain, Vector Black, Vector Blue, Vector NovaRED, Vector Red, Wst, Alexa Fluor, BODIPY, CY3, Dylight, Fluoro-Jade, iLightTracker, Mitotracker, NeuroTrace, Pacific Blue, PicoGreen, SYTOX, TrueVIEW. Atto, Alexa Fluor, BODIPY, DRAQ5, DyLight, Fluoro-Jade, LysoTracker, MitoTracker, NeuroTrace, Pacific Blue, PicoGreen, SYTOX, TrueVIEW are trademarks of Thermo Fisher. Cyanine is a trademark of GE Healthcare.

©Vector Laboratories, Inc. 2018
vectorlabs.com